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CHAPTER 17 -- CAPACITORS

17.1)  Initially, an uncharged capacitor will allow current to flow through
it as though it had no resistance to charge flow at all (i.e., it will act like a
short-circuit).  As time progresses and the capacitor charges, current through
the cap decreases as it becomes more and more difficult to force still more
charge onto its plates.  After a long enough time, current will cease completely
and the totally charged capacitor will act like a break in the circuit (i.e., an
open-switch circuit).  We will do the entire problem for Circuit a first, then do
the problem for Circuit b.

Circuit a finds two capacitors in series.  Series elements have common
currents.  For capacitors, that means the magnitude of the charge
accumulated on each capacitor plate will be the same for all caps in the series
combination.  It also means that for different size capacitors, the voltage
across each capacitor will be different (remember, V1 = Q/C1).

a.)  The initial current through the circuit will be that of a resistor in
series with a battery (the uncharged caps will act like "shorts"), or:

i = VR/R
   = (120 volts)/(20 Ω)
   = 6 amps.

b.)  To begin with, when the capacitors are totally charged, there will
be no current through the circuit (the charged capacitors will act as
open circuits).  That means the entire 120 volt voltage drop will be across
the capacitor combination (none across the resistor as i = 0 . . .
remember, the voltage across a resistor is iR).

The charge on each individual capacitor will be the same as the
charge on the circuit's equivalent capacitor.  The equivalent capacitance
for a series combination is such that:

1/Ceq = 1/C1 + 1/C2 + . . .

Ceq = [1/(6x10-6 f) + 1/(12x10-6 f)]-1

        = 4x10-6 farads.

From C = Q/V we get:

Q = CV,
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where C is the capacitance of the capacitor in question, Q is the charge
on one of the capacitor plates, and V is the voltage across the cap.  With
C = Ceq and V = 120 volts, we get:

Q = CeqVo
    = (4 x10-6 f) (120 volts)
    = 4.8 x10-4 coulombs.

Each capacitor will hold 4.8x10-4 coulombs per plate when fully charged.

c.)  Knowing the charge on the 6 µf cap, we can use C = Q/V to
determine the voltage across the cap:

V6 = Q/C6
       = (4.8 x10-4 C)/(6 x10-6 f)

     = 80 volts.

Note:  As the total battery charge is 120 volts, that means the other
capacitor has 40 volts across it when fully charged.

d.)  The energy wrapped up in a charged capacitor equals:

Energy = (1/2)CV2,

where C is the cap's capacitance and V is the voltage across the cap.
Using this yields:

Energy = .5(6 x10-6 f)(80 volts)2
   = .0192 joules.

e.)  The RC time constant (τ) tells you the amount of time required for
the capacitor in the circuit to charge up to 63% of its total charge.  Two
time constants is the time to charge up to 87%, and three time constants
the time to charge to 95% of its maximum charge.  (By the same token, a
charged system will dump 63% of its charge in a time interval equal to
one time constant, 87% in a time interval equal to two time constants,
and 95% in a time interval equal to three time constants).

The relationship between the time constant, the net resistance in the
circuit, and the net capacitance of the circuit is:
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τ = RCeq
   = (20 Ω)(4x10-6 f)
   = 8x10-5 seconds.

f.)  As stated above, 63% of the charge will be lost in the first time
constant.  That means 37% will be left.  As such, we can write:

       .37(4.8 x10-4 coul) = 1.8 x10-4 coulombs

will be left.

Circuit b finds two capacitors in parallel.  Parallel elements have
voltages in common.  For different size capacitors, that means the
amount of charge on each cap will be different (remember, Q1 = C1V).

a.)  As before, the caps will act like shorts when uncharged.
Current must go through the resistor to return to the battery, so the
initial current again will be governed by the size of the resistor in the
circuit with the entire voltage drop occurring across that element:

i = VR/R
   = (120 volts)/(20 Ω)
   = 6 amps.

b.)  When the capacitors are totally charged, there will be no current
through the circuit (the charged capacitors will act as open circuits).
That means the ENTIRE 120 volt voltage drop will be across EACH
parallel capacitor.

For the 6 µf cap:

Q6 = C6Vo
      = (6 x10-6 f)(120 volts)
      = 7.2 x10-4 coulombs.

For the 12 µf cap:

Q12 = C12Vo
       = (12 x10-6 f)(120 volts)
       = 1.44 x10-3 coulombs.
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c.)  When fully charged, the maximum voltage across the 6 µf cap
will be Vmax = 120 volts (as stated above).

d.)  The energy wrapped up in the 6 µf cap when fully charged
equals:

Energy = .5(6 x10-6 f)(120 volts)2
   = .0432 joules.

e.)  The previous Part e explained what the time constant means.
Determining it for this circuit requires that we determine the equivalent
capacitance for the circuit.  For parallel combinations of capacitors, we
just add the capacitances.  That means:

Ceq = (6 x10-6 f) + (12 x10-6 f)

        = 18 x10-6 farads.

Knowing that:

         τ = RCeq
= (20 Ω)(18 x10-6 f)
= 3.6 x10-4 seconds.

f.)  As stated above, 63% of the charge will be lost in the first time
constant.  That means 37% will be left.  As such, we can write:

       .37(7.2 x10-4 C) = 2.7 x10-4 coulombs

will be left.

17.2)

a.)  By inspection, the equivalent capacitance for each combination
is:  (a.)  (2/3)C; (b.)  3C; (c.)  (2/3)C (this configuration is exactly the same
as Part a--only the sketch has been rendered differently); (d.)  C/3; (e.)
(3/2)C.  That means the order should be: d, a and c, e, and b.

b.)  The energy content of a capacitor combination is such that:

       (1/2)CeqV2,
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where Ceq is the equivalent capacitance of the capacitor combination in
question.  For a given voltage, that means the most energy-storing
capacity will go to the combination with the largest equivalent
capacitance.  That will be the parallel capacitor combination in Part b.

17.3)  The capacitance of a single parallel plate capacitor is:

C =εoA/d,

where A is the area of one plate, d is the distance between the plates, and εo is

the permeability of free space and is equal to 4πx10-7 farads per meter.

a.)  Neither εo nor A is changing in this situation, whereas d gets

larger by a factor of 4.  That means, according to C = εoA/d, the
capacitance should diminish by a factor of 4, giving us (1/4)Coriginal.

b.)  The charge on the capacitor is related to the voltage across the
capacitor and the size of the capacitor by the relationship:

      C = Q/V    or     Q = CV.

V hasn't changed but C is now a quarter of its original value.  That
means Qnew must equal (1/4)Qold.

c.)  The energy equals:

Energy = (1/2)CV2.

This implies that the energy in the cap will decrease by a factor of 4 also.

d.)  Knowing the dielectric constant allows us to determine the new
capacitance knowing the old capacitance.  That is:

Cnew = κdCold.

That means Cnew = 1.6 Cold.
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b.)  The energy stored in a capacitor of capacitance (8/5)C is:

17.4)
a.)  The circuit evaluation to determine Ceq is shown below

(remember that the equivalent capacitance rules are the mirror image
of equivalent resistance rules).

E = (1/2)CV2

    = .5[(8/5)(25x10-3 f)](120 v)2

    = 288 joules.

17.5.)
a.)  This question is just down right tricky.

--When the switch is closed, the 30 Ω resistor is in parallel with
the two series-connected capacitors.  Being in parallel, the net voltage
drop across the capacitors and across the resistor must be the same.

--Initially, the capacitors have no charge on them.  That means
the capacitors initially have no voltage drop across them.

--No initial voltage drop across the capacitors means no initial
voltage drop across the 30 Ω resistor.

--With no initial voltage drop across the 30 Ω resistor, there will be
no initial current through that resistor.  As such, the initial current i3
equals zero.

--Meanwhile, the capacitors initially act like open circuits (with no
charge on them, there is nothing to motivate them to do otherwise),
which means the initial current will flow freely through them and i1 = i2.

--That means the entire 120 volts from the battery is initially
dropped across the 20Ω resistor, and we can write initial currents as:

i1 = (120 v)/(20 Ω) = 6 amps;
i2 = i1 = 6 amps; and
i3 = 0.

b.)  After a long period of time:
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--The capacitors will be fully charged so that i2 = 0;
--The currents i1 and i3 will be equal to one another.
--The full 120 volt drop will be across the 30 Ω and 20 Ω resistors in

series.  As such, the steady-state current will be:

i1 = i3 = (120 v)/(50 Ω) = 2.4 amps, and i2 = 0.

c.)  Note first that this is also a bit tricky.  Why?  Because the fact that
there are three unknown currents might lead you to believe that you
need only three equations.  The problem is that there are also capacitors
and unknown charge quantities with which to deal.  There are three
loop equations possible, but only two are independent of one another.  In
short, we need two loop equations, one node equation, and one other
equation.  Starting with Kirchoff's Laws (presented in general algebraic
terms first) and noting that the equivalent capacitance of the series com-
bination of capacitors is 4 µC, we can write:

Node equation: i1 = i2 + i3.

Left inner loop: Vo -    q/Ceq    - i1R20 = 0

⇒       120 - q/(4x10-6) -  20i1  = 0.

   Right inner loop: -i3R30 +   q/Ceq     = 0

⇒          -30i3 + q/(4x10-6) = 0.

Where does the last equation come from?  The rate at which charge q
is deposited on the capacitor's plates and the current dq/dt in that part of
the circuit are the same, so we can write:

i2 = dq/dt.

These are the four equations we need to determine i1, i2, and i3.

Note:  You could have used the outside loop instead of either of the two
loops used.  Doing so would have yielded the equation:

Vo - i3R30 - i1R20 = 0.

d.)  The charge on the 6 µf capacitor will be the same as the charge
on the 12 µf capacitor (they are in series).  By definition, this will also be
the same as the charge on the equivalent capacitor.
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When the capacitors are fully charged, the current through the
circuit will be i1 = i3 = 2.4 amps, as calculated above.  That means the
voltage drop across the 20 Ω resistor will be:

V20 = i1R20
        = (2.4 amps)(20 Ω)
        = 48 volts.

Adding voltage drops as we go, the voltage drop across the battery
will equal the sum of the voltage drops across the two capacitors (or their
single equivalent capacitor) and the 20 Ω resistor.  At maximum, that is:

Vo = Vc,max + V20
     ⇒     120 = Vc,max + 48

     ⇒     Vc,max = 72 volts.

Knowing the voltage across the equivalent capacitor, we can use the
definition of capacitance to determine the charge on that capacitor:

 qmax = CequVc,max
= (4x10-6 farads)(72 volts)
= 2.88x10-4 coulombs.

e.)  The total energy on the capacitors when fully charged will be:

Energy = (1/2)CequVc,max
2

   = .5(4x10-6 farads)(72 volts)2

   = 1.04x10-2 joules.

f.)  It will take the capacitor two time constants to dump 87% of its
charge.  As the 20 Ω resistor is out of the circuit when the switch is open:

t = 2τ 
   = 2[RCequ]

   = 2(30 Ω)(4x10-6 farads)
   = 2.4x10-4 seconds.

 17.6)  A sketch of the setup is shown on the next page.  To determine the
capacitance expression, we need to determine q/Vc, where q is an arbitrary
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dielectric with dielectric 
constant equal to 

  cross-section of
 double dielectric-
filled coaxial cable

 wire of
radius R

4R

5R

dielectric with dielectric 
constant equal to 7 

 conducting mesh
(outer plate of cap)

assume a constant linear 
charge density (    ) down 
     the inner conductor

amount of charge on the capacitor
and Vc is the voltage across the
capacitor plates when q is present.
Vc is the electrical potential
difference between the inner
surface and the interface between
the two dielectrics added to the
electrical potential difference
between the dielectric interface
and the outer surface.

To determine these electrical
potential differences, we need to
know the electric fields in these
areas.

Doing the problem in pieces,
begin by determining a general
expression for the electric field
between R and 4R (call this region I).  Begin by assuming a linear charge
density of λ = +q/L on the inside cylinder (i.e., the wire), where L is an
arbitrary length and q is the amount of charge on the wire along that length.
Defining a cylindrical Gaussian surface of length L, we can write Gauss's
Law as:
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The dielectric constants in the two regions are different, but aside from
that, the electric field expressions should have the same form.  As such, we
can write:
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With these electric field expressions, we can now determine the net
electrical potential difference across the plates.  If we start at the higher
voltage plate (the inside plate) and move in the direction of the electric field
(i.e., outward) toward the outside plates, the calculated V will be negative.  As
Vc in the capacitance definition is defined as positive, we must write:
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This expression, the fact that λ = +q/L, and the definition of capacitance
yield:
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17.7)  The problem that wasn't.  THINK ABOUT SPHERICAL CAPA-
CITORS ON YOUR OWN!!!


